

Contents
Version History	3
Glossary of Terms	4
Introduction	5
Use Cases	5
Deployment	5
Typical Scenarios	5
Options (AZs and Regions)	6
Completion Time	6
Prerequisites and Requirements	7
Technical Requirements	7
Network Requirements	7
Skills Requirements	7
Architecture	8
Security	9
RBAC Requirements	9
Secrets	9
Customer Sensitive Data	9
Data Encryption	9
Pricing	10
Pay-as-you-go	10
Fixed	10
Sizing	10
Deployment Assets	11
Deployment Workflow	11
Health Check	12
Testing and Troubleshooting	12
Cluster Troubleshooting	12
Backup and Recovery	12
Maintenance	13
Routine Maintenance	13
Key Management	13
Software Upgrade and Patching	13
Licensing and Service Limits	13
Support	13
Tiers	13
Contact	13

Version History

VERSION	DATE	DESCRIPTION OF CHANGE	AUTHOR
1.0	June 2023	Initial Version	Dan Donahue
			
			
			
			

Glossary of Terms
The purpose of this table is to define all non-AWS and Kubernetes terms used in this document.

Term	Definition
BYOC	Bring Your Own Cluster – kubectl access is available
DR	Disaster Recovery
Edge Cluster	VAN cluster that “calls home” to a Hub to join a VAN
GitOps	[footnoteRef:1]An operational framework that takes DevOps best practices used for application development such as version control, collaboration, compliance, and CI/CD, and applies them to infrastructure automation. [1: https://about.gitlab.com/topics/gitops/]
Hub Cluster	VAN cluster with reachable IP and where GitOps server applications run
IaC	Infrastructure-as-Code
KAOPS	Nethopper PaaS/SaaS Solution
L7	Layer 7 (Application layer in the OSI model)
mTLS	Mutual Transport Security Layer (RFC 8705)
on-prem	On-premises software
PaaS	Platform-as-a-Service
SaaS	Software-as-a-Service
UI	Refers to the NH PaaS User Interface
VAN	Virtual Application Network L7 overlay network upon which NH platform creates and operates

Introduction
The purpose of this document is to provide the guidelines, requirements, and pricing for deploying Nethopper on an Amazon Kubernetes EKS cluster participating as an edge cluster in an Nethopper Virtual Application Network (VAN).

A VAN is a secure L7 overlay network that uses mTLS for encrypting each endpoint.

Readers of this document should already be familiar with AWS and Kubernetes terminology.

Use Cases
The KOAPS platform by Nethopper provides a multi-cloud/cluster PaaS/SaaS for managing Kubernetes deployments by building a virtual application overlay network, VAN, which uses a GitOps approach for automating Infrastructure-as-Code (IaC) and Kubernetes application deployment, management, and observability.

A VAN is comprised of a hub cluster and one or more edge (or remote) clusters. A hub cluster is the one cluster in a VAN that has reachable/public IP address (e.g. EIP) to which edge clusters can call home and attach. An edge cluster refers to a Kubernetes cluster that calls home to a hub cluster and attaches itself to a VAN. An edge cluster does not require a public IP address to attach to a hub. This deployment guide is intended for an EKS cluster being used as an edge cluster in a VAN.

KAOPS can be used for automating Kubernetes application deployment, management, and observability, Infrastructure-as-Code. Click the URLs for more information.

Use cases are data replication, DR, HA, hybrid and multi-cloud.

Deployment
Typical Scenarios
A typical deployment of a VAN is in a hybrid cloud scenario. In the hybrid cloud scenario customers run an on-prem hub cluster and attach AWS EKS or EC2 running K8s as edge clusters.

Refer to the Multi-Cloud, multi-cluster, and multi-tenant section of architecture overview page on Nethopper’s website for more information.

Options (AZs and Regions)
KAOPS is cloud (public and private) and K8s agnostic, which means hub and edge VAN clusters can be deployed on any K8s cluster inside or outside AWS. From an AWS perspective, this means there is no restriction on the number of EKS (or EC2 running K8s) clusters deployed in any AZ or region. The VAN provides L7 overlay connectivity (think VPN) between all clusters regardless of deployment location.

With no restrictions on AWS AZs or regions, customers can use KAOPS for designing a VAN that distributes their DR, data replication, etc. applications across multiple data centers.

For more information see the answers to the following questions the FAQ page:

Nethopper uses Clusters, Application Networks, Applications, and Objects. What are these?
How are remote clusters attached to hub cluster’s ArgoCD server?
How are the namespaces of a Standard application network interconnected?

Completion Time
In a BYOC deployment, deploying the KAOPS agent/operator to an EKS hub or edge cluster can be done in about 5 minutes time with a few clicks on the KAOPS UI and executing a one-time kubectl command to install the agent on each cluster.

Prerequisites and Requirements
Technical Requirements
The minimum cluster requirements required to deploy a Nethopper agent in a hub or edge cluster are found in the following table.

Cluster	Nodes	vCPUs	RAM	Storage	Min. K8s Version	Recommended AWS Machine Type
Hub	1	2	8GB	30GB	1.19	t3.xlarge
Edge	1	2	4GB	30GB	1.19	t3.medium

An AWS IAM account is required for creating an EKS cluster.

For EKS clusters a single node cluster will work, but a node group with at least two nodes is recommended.

A hub or edge cluster EC2 instance running minikube has been tested using the minimum requirements listed above.

Network Requirements
The Security Groups in the VPC must have port 443 open in the outbound direction in order for the EKS Edge cluster to attach to the Hub. No EIP is required for an EKS Edge cluster.

Skills Requirements
KAOPS’ goal is to serve as an “easy button” for K8s and does not require expert AWS or K8s knowledge. For example, an AWS Certified Cloud Practitioner should be able to use the KAOPS platform to deploy to EKS or EC2 instances running K8s.

KAOPS users deploying hub or edge clusters should have familiarity with K8s and the kubectl console command. Users should also have a familiarity creating AWS EC2 instances and EKS clusters and executing kubectl commands therein.

Refer to the Create Test Cluster page on Nethopper’s website on for step-by-step instructions on how to create a simple minikube cluster in an existing EC2 instance. The instructions are not EC2 specific but can be followed to get K8s up and running in an EC2 instance.

KAOPS users deploying to AWS clusters should have a working knowledge of the KAOPS UI. Refer to the KAOPS: Navigating the UI YouTube video for an overview of the UI. Other training videos can be found at the Nethopper KAOPS YouTube channel as well.

Architecture
The following diagram depicts a typical deployment of EKS cluster used as edge cluster in a VAN.

Each EKS cluster can be a single node cluster (1 Master and 1 Worker) using a single VPC and two private subnets. Outbound internet connectivity is all that is required for connectivity, so no public subnet is needed.

The EKS cluster communicates with the Hub cluster over an L7 VAN.

The EKS cluster/s communicates with the KAOPS backend and image artifactory (e.g., Docker Hub) over the internet.

Figure 1 - EKS Edge Cluster Architecture

@startuml
actor DevOps as admin #DeepSkyBlue
participant "KAOPS UI" as nh #Lime
participant OnPremHub as hub #Orange
participant EKS1 as remote1 #Orange
participant EKS2 as remote2 #Orange

group Network Setup
admin->nh : add cluster Info
admin->nh : configure VAN
admin->hub : install nethopper agent
admin->remote1 : install nethopper agent
admin->remote2 : install nethopper agent

group Network Forms
hub<-remote1: argo "call home" to server
hub<-remote2: argo "call home" to server
end

end

group Application Config
admin->nh: enter repo info
nh-->hub: trigger
hub->hub: create ApplicationSet/s
end

group Application Deployment
hub->remote1: deploy apps
hub->remote2: deploy apps
hub->hub: deploy apps
end

group Monitoring & Telemetry

group Cluster [Network/Agent/Argo status]
nh<-->hub
nh<-->remote1
nh<-->remote2
end

group Application [Argo server maintain desired state]
hub-->hub
hub-->remote1
hub-->remote2
end

group Observability [Grafana on hub scrapes hub/edge Prometheus servers]
nh-->hub
hub-->hub
hub-->remote1
hub-->remote2
end

@enduml

Security
RBAC Requirements
Deploying the Nethopper agent to an EKS cluster does not require root access. The only requirement to deploy Nethopper to an EKS cluster is the IAM role must be able to access kubectl. Kubectl is used for the one-time installation of the Nethopper agent.

Secrets
Any secrets maintained in the cluster are managed by the Nethopper agent, AWS Secrets Manager is not required.

Customer Sensitive Data
The Nethopper agent does not access, nor do we have access to, customer data.

Data Encryption
All clusters in a VAN are mTLS endpoints. Clusters authenticate each other using X.509 digital certificates. Once authenticated all traffic is encrypted using the negotiated cipher.

Pricing
Nethopper offers two pricing models available for use with AWS - pay as you go and fixed monthly.

Pay-as-you-go
Pay-as-you-go pricing model allows AWS users to pay for only the resources and services that are used during a given hour and month, without any upfront costs or long-term commitments. There are two items that will be billed under the pay as you go model - Kubernetes Clusters and Kubernetes Object. The clusters and objects are priced per item/per hour that are deployed on EKS.

Fixed
The fixed monthly billing structure offers a predictable KAOPS bill monthly making it easy to understand and annual costs for using Nethopper services. Fixed pricing provides a set number of Kubernetes clusters under management and Kubernetes objects under management. Minimum contract terms = 1 year.
Sizing
The minimum requirements for deploying a Nethopper agent to an EKS edge cluster is a single node cluster (1 master, 1 worker node). The EC2 instance used for a worker node must be a minimum t2.medium (2 vCPU/8GB RAM).

Deployment Assets

Deployment Workflow
The following diagram illustrates all the typical steps to create a VAN and deploy applications to EKS edge clusters.

Figure 2 - User Workflow

Health Check
Testing and Troubleshooting
To validate the health of all clusters and deployments, the user will log into the KAOPS UI and observe cluster health and connectivity statuses as well as application sync and health status with respect to GitOps (ArgoCD). ArgoCD determines status based on applications state versus the source of truth – the repository from which it was deployed.

Cluster Troubleshooting
If a cluster’s Hub Link is Down, verify the underlying physical network and internet connectivity is operational. If it is, re-install the Nethopper agent. Re-installing the agent will re-connect the cluster to the hub cluster, thus rejoining the VAN.

If the cluster’s Agent Status is Down, this indicates the EKS edge cluster is unable to reach the KAOPS backend over the internet. Verify internet connectivity and if it is OK, then contact the Nethopper support team. See the Support section of this document for more information.

If the cluster’s Argo Status is Down, this indicates the ArgoCD server running the hub cluster is unable to reach the K8s API of the EKS edge cluster. This indicates a problem with hub cluster. Contact the Nethopper support team for help. See the Support section of this document for more information.

Backup and Recovery
All cluster parameters are stored in Nethopper’s backend. To recover and an EKS edge cluster simply re-install the agent in the affected clusters. All applications previously deployed on that cluster will be re-deployed to the new cluster.

Maintenance

Routine Maintenance
Key Management
The Nethopper agent key is not rotated. Agent keys are re-generated upon each deployment. If a key rotation is required, then un-install and re-install the Nethopper agent.

Software Upgrade and Patching
The Nethopper agent is automatically upgraded when a new agent version is released.

Version control of deployed applications is automatically controlled by ArgoCD. ArgoCD monitors application manifest version and syncs the deployed application to match the repository.

Licensing and Service Limits
Nethopper imposes no AWS service limits on the customer.

Nethopper uses consumption-based licensing model. The consumption level is based on the pricing model the customer selected. The pricing models can be viewed in the Pricing section of this document.

Support
Tiers
The support tiers are based on the pricing model selected by the customer. Those pricing models, and support tiers can be viewed in the Pricing section of this document.

Contact
To view the ways to contact Nethopper support the Customer can click Support on the drop-down menu associated with their user account on mynethopper.com.

2

image2.png

image3.png

image4.png

image1.png

