
What Happened
to Platform
Engineering?

e B o o k
By Daniel P. Donahue
@ddonahuex |

 Copyright © 2024 by Nethopper Inc. All Rights Reserved.

 This ebook and its contents are the property of Nethopper and are protected by
copyright laws. The information contained in this ebook is intended for
informational purposes only and is not intended to be a substitute for

professional advice.

 Any reproduction, distribution, or other use of the contents of this ebook
without the prior written consent of Nethopper is strictly prohibited. You can use
this ebook for your personal, non-commercial use nly, provided that you do not

modify or delete any copyright or other proprietary notices.

 By accessing or using this ebook, you agree to be bound by the terms and
conditions set forth in this copyright disclaimer.

What Happened to Platform Engineering?
Daniel P. Donahue

2

Dan is Nethopper’s Principal Solutions

Architect. He defines himself as a startup

veteran, contributing at various levels,

including architecture, leadership, and

software development. Dan received his

first patent in 2022. Prior to Nethopper, Dan

held leadership and technical roles at

Parallel Wireless, Juniper Networks, and

RiverDelta Networks, and other early stage

startup companies.

Author
Daniel P. Donahue

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 3

Executive Summary 05

IDP Architecture 15

Introduction 06

A Modern IDP Framework 22

The App Modernization Shift 08

Conclusion 37

Table of
Contents

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 4

The purpose of this ebook is to
define what happened to Platform
Engineering (PE) in the frenzied
push for application modernization
that has left many organizations
mired in their cloud native
initiatives.

What Happened to Platform Engineering?
Daniel P. Donahue

The goal of this ebook is to
provide a solution that gives
organizations the ability to
jumpstart their platform
engineering efforts, and enable
their business applications.

1. EXECUTIVE SUMMARY

The Rush to App
Modernization
What Happened to Platform
Engineering?

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 5

Platform engineering is not a
new term in the tech industry.

But it is quite new in the
cloud native space and the
context of Kubernetes. We

were not using the term in the
cloud native communities
when I started writing this

book in back in 2020.1

2. INTRODUCTION

Platform
Engineering
Bits, Bytes, and Nuances

I understand most technical white
papers are supposed to be lots of bits
and bytes and devoid of any personal
nuances, but this one is going to be
different.

While the bits and bytes will certainly
be present, they will be mixed with
personal experiences, because, by
nature, I am a Platform Software
Engineer. It’s what I’ve done for almost
25 years. I am very passionate about it.

Much of what I’ve read recently in
blogs, social media posts, and books
compelled me to write this ebook,
because Platform Engineering (PE)
seems to be a new concept to many. It
is not. Platform engineering simply
moved from Software Engineering to
DevOps/IT.

Therein lies the awakening of
DevOps/IT teams to platform
engineering and the challenge it
presents for them.

In his book entitled Platform
Engineering on Kubernetes, which I
highly recommend, author Mauricio
Salatino makes a similar statement
regarding the platform engineering
term. Mauricio says:

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 6

2. INTRODUCTION

In 2013, I was hired by a startup to
architect, develop, and deliver
platform software for 4G and 5G
mobile network solutions. In that
role, like many of my startup roles
before it, I was expected to, and did
develop platform software from
scratch to support the core
application software (mobile
networking protocol stacks) running
in remote radio heads (RRH) and
COTS server running in the network
core.

In late 2018, the same startup
company mandated both the RRH
and COTS servers move to cloud
native, or in other words,
Kubernetes. The deliverables of my
role changed from architecting
proprietary platform software to
architecting solutions based on lots
of open-source (OSS) tools and
applications.

Rearchitecting the core software
application out of the monolithic
images and into containerized
microservices-based images was the
easy part. Replacing the
infrastructure support provided by
the proprietary platform software
proved to be the most difficult.

I was dragged kicking and screaming
into that effort and subsequently into
the Kubernetes world. I was required to
develop a platform solution that
supported the new microservices based
architecture. I didn’t like it.

At first, I was frustrated sifting through
the plethora of information available for
learning Kubernetes and other CNCF
(Cloud Native Computing Foundation)
projects. It was initially overwhelming,
but in time I found the engineering
principles required to develop cloud
native platforms were not so different
from developing proprietary ones and,
so, I made my peace with Kubernetes.

This ebook is an attempt at articulating
my journey in such a way that helps
others on their cloud native platform
engineering journey.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 7

https://www.cncf.io/

3. THE APP MODERNIZATION SHIFT

Shift to Cloud
Native
From Monolithic to Containerized Microservices
Call it app modernization, digital transformation, cloud native, or any other
catchy industry phase for the shift to Kubernetes.

In this shift to cloud native development, the industry has moved from
delivering monolithic application images to delivering containerized
microservices based images.

It has been estimated 79% of application modernization efforts fail.2 The

failure can be attributed to several reasons.

OF APP
MODERNIZATION

PROJECTS FAIL

• Inadequate skills due to the global
lack of cloud native talent.

• Lack of intelligent tools.

• Lots of open source projects, but
they come with no support.

• The effort is often underestimated
from a complexity, timeline, and
budget perspective.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 8

3. THE APP MODERNIZATION SHIFT

Monolithic images contain everything needed to support the core application/s
including, the OS (sometimes) proprietary platform infrastructure software, OSS
and proprietary libraries required by the OS, platform software, and core
applications. By contrast, containerized images contain the core application and
only the OSS tools and packages needed by the application.

A monolithic image can sometimes be refactored into several containerized
images as was the case of my previous startup as mentioned in the Introduction.
Refactoring monolithic applications into containerized microservices enables
software developers to deliver their containerized applications with no
dependencies on other domains co-resident in a monolithic image. This means
in the cases where application specific teams, who have no external
dependencies on features from other teams, can deliver features at their own
cadence. When the image is delivered to production, Kubernetes will update
only the pod/s associated with the image.

There are several benefits to shifting to cloud native development, but we will
focus on three of them: app-centric development, continuous deployment, and
infrastructure abstraction.

App-Centric
Development

Continuous
Deployment

Infrastructure
Abstraction

Shifting to Cloud Native Development

KEY BENEFITS

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 9

3.1 APP CENTRIC DEVELOPMENT

App-Centric Development Requires a
Framework Like Kubernetes to Succeed

Hyper Focus On the Core
Application(s)

The app-centric development model
enables organizations to hyper focus on
the core application/s that drive their
business. For example, in the
Introduction I mentioned my previous
role of delivering proprietary platform
software for a mobile network solution.
That company was not in the platform
software business. Their core
applications revolved around mobile
networking protocol stacks, physical
layer interfaces, and core network
functionality.

In their shift to cloud native, the core
applications were re-factored into
containerized image artifacts. My
team’s and my proprietary platform
software were not.

Kubernetes would now be handling the
launching, monitoring, security, and
upgrading of the applications. OSS
projects like fluentd, Prometheus, and
others would handle FCAPS (Fault,
Configuration, Accounting,
Performance, Security) previously
handled by the proprietary platform
software.

Product led organizations no longer
must concern themselves (or their
software engineers) with proprietary
platform software and software
requiring intimate knowledge of
system hardware requirements.

The Kubernetes framework handles
many of the functions of proprietary
platform software. Kubernetes
provides an abstraction layer for the
management of compute, network,
and storage. Kubernetes also manages
the application (pod) lifecycle. No
need to write Linux daemons for your
applications anymore. Write an
application manifest and give it to the
Kubernetes API using kubectl and your
application pod is deployed and
monitored. If the pod encounters an
error or terminates, then Kubernetes
will restart it.

What does the shift to app-
centric development mean
for organizations delivering

applications?

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 10

3.2 CONTINUOUS DEPLOYMENT

A Full-Featured Platform Is Required
to Do Continuous Delivery

CI/CD Pipelines

As a software engineer and Platform
team lead, I’ve been part of many CI/
CD initiatives. In all of them, we got the
CI and CD (Continuous Delivery) part
right, but somehow the Continuous
Deployment got left behind entirely.

Before moving on, I should explain the
difference between Continuous
Delivery and Continuous Deployment.

• Continuous Delivery essentially
automates the software
development process up to the
point of deployment to
Production, which is done
manually.

• Continuous Deployment can
automatically deploy to
Production.

I know the term “automatically
deploying to Production” immediately
gives agita to everyone from the C-
suite to the engineer committing the
code. As stated previously Continuous
Deployment can automatically deploy
to Production.

A well architected platform provides
that ability but also makes it optional
(enabling manual update) or elegant
using various rollout techniques
(canary, blue/green, etc.).

The Continuous Delivery model is
typically handled by an automation
server like Jenkins. I know the Jenkins
users will write telling me I am wrong,
that Jenkins can do Continuous
Deployment as well. Maybe, but it is
not elegant, it is certainly not
production grade because Jenkins is a
software development tool, an
automation server – not a platform. The
result is Continuous Delivery is left
behind in the push to create
CI/CD pipelines.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 11

https://www.jenkins.io/

The platform required to manage the cloud native
ecosystem application deployment and monitoring,
infrastructure automation, observability, etc. does

not exist.

3.2 CONTINUOUS DEPLOYMENT (Cont.)

At Nethopper, I’ve met with many organizations and pro/managed services
providers and realized my experience is not unique. Many organizations are
struggling with Continuous Deployment.

What is the common thread?

The platform required to manage the cloud native ecosystem application
deployment and monitoring, infrastructure automation, observability, etc.,
does not exist.

They are left with a platform choice: build, manual operation, or buy:

• BUILD: Building it themselves is risky. The time and expense put forth is
not a guarantee of success.

• MANUAL OPERATIONS: If the choice is manual management, then Ops
teams must use kubectl commands on every cluster to manage
applications. That does not scale.

• BUY: The best option is to buy, but what should be the criteria for
choosing a platform?

We’ll get to that in a bit.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 12

The migration path of software
platforms over the last couple of
decades (post-mainframe) went from
embedded, to COTS servers, VMs,
and now cloud native. One of the
main benefits in moving to a cloud
native software architecture using
Kubernetes is the compute, network,
and storage are abstracted from the
application.

The software architect, not the
application developers, needs only to
define the compute, network, and
storage requirements for their
application and the public cloud
providers ostensibly handle the rest.
Therein lies the problem.

The former platforms, embedded/
COTS servers, and many times VMs,
were defined, pre-configured, pre-
installed with app software by either
engineering or operations teams. The
burden of building clusters has now
moved to DevOps, which in many
companies, from a skills perspective, is
ill-equipped to handle it. DevOps,
Central IT, now has choices to make.

Do we upskill our team? Do we hire
new talent? Upskilling takes time with
no guaranteed outcome. Hiring the
right talent is elusive and expensive
when found. One CIO told me finding
such a person is nearly impossible and
when you do they want more money
than the CEO.

Building and provisioning infrastructure
results in one of two scenarios:

• The first scenario is the
infrastructure burden falls back to
engineering as opposed to
central IT. The development
experience promised by a cloud
native architecture of being app-
centric turns out to be false.
Developers now must learn
Kubernetes, Infrastructure-as-
Code (IaC), etc.

• The other scenario is the DevOps
teams must now develop a
platform for building
infrastructure, deploying
applications, observability for the
infrastructure and applications.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 13

3.3 INFRASTRUCTURE ABSTRACTION

Solving Infrastructure Abstraction for
Cloud Native Architectures and Enabling
Devs to Develop and Ops to Operate
Migration Path

3.3 INFRASTRUCTURE ABSTRACTION (Cont.)

In either case, the net result is either
Devs doing Ops work or Ops folks
doing Dev work. In both cases,
nobody is happy, and the
organization is not functioning well.

Is there a solution?

The answer to solving the
infrastructure abstraction reality for
cloud native architectures is an IDP
(Internal Developer Platform) that
enables devs to dev and ops to op.

An IDP provides a framework the Ops
team use to create an operational
cloud native ecosystem that serves all
contexts for an organization’s
applications.

A typical ecosystem has the following
deployment contexts: Dev, QA,
Staging, and Prod.

An IDP should be able to build
infrastructure, deploy and observe the
applications using existing
CI/CD pipelines to achieve true
Continuous Deployment for each of
the contexts in a consistent manner.

A recent article on thenewstack.io
cited a poll that said:

“We found that virtually all
(99%) of the engineering
leaders we surveyed had

begun using platform
engineering in their

organizations, with 53%
reporting that they’ve

begun [2023]. Meanwhile,
the vast majority (85%) of
respondents said they’d

either started implementing
internal developer portals

or were planning to do so in
the next year.”

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 14

https://thenewstack.io/85-of-engineers-say-theyll-use-an-idp-in-2024/

4. IDP ARCHITECTURE

Internal Developer
Platform (IDP)
Cloud Native IDP

An IDP is required to build and
manage infrastructure (both private
and public clouds) using IaC
(Infrastructure-as-Code), deploy
applications, automate CI/CD
pipelines, while providing observability
for all those domains.

There are two architectural
components required for a cloud
native IDP: a DevOps framework and
secure multi-cluster networking.

• A DevOps framework that supports
a cloud native IDP is the first
architectural decision platform
engineers need to make. GitOps is
widely considered the foundational
element of an IDP architecture.

• An IDP that manages an ecosystem
of clusters requires communication
between clusters. This requires
multi-cluster networking, which
must be secure and not needlessly
complex.

Kubernetes provides simple intra-
cluster communication but does not
natively support inter-cluster
communication.

Notice I didn’t say multi-cloud. Multi-
cloud is an industry term that typically
refers to support for the big cloud
providers (AWS, GCP, and Azure).

Multi-cluster networking is a technical
term used in this document referring to
communication between any variation
of clusters, whether private (on-prem)
or public. Multi-cluster can also be
referred to as hybrid clouds.

These two architectural components
are detailed in the following
subsections.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 15

4.1 GITOPS

Git Repositories Are the Declarative
Source of Truth for the IDP

DevOps Is a philosophy, Not a
Framework

GitOps is a framework applicable to
DevOps philosophies. GitOps is
defined by GitLab as:

GitOps is an operational
framework that takes
DevOps best practices

used for application
development such as

version control,
collaboration,

compliance, and CI/CD,
and applies them to

infrastructure
automation.3

GitOps by nature is both declarative
and auditable. Declarative in the sense
that what is defined in git is what is
instantiated. GitOps is auditable
because all git actions in repositories
leave an immutable audit trail of who
changed what and when.

In GitOps, git repositories are the
declarative source of truth for the IDP.

An IDP that utilizes GitOps builds
(infra), deploys (apps), and manages
(CI/CD pipelines) what is declared in
git.

When used for IaC, for example,
GitOps can control cloud spend by
mitigating infrastructure drift. The next
section details this further.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 16

https://about.gitlab.com/topics/gitops/

4.1.1 BUILDING INFRASTRUCTURE WITH GITOPS

Infrastructure built using GitOps mitigates
infrastructure drift.
Having a declarative source of truth becomes particularly important when
using IaC to build public and private (on-prem) clusters. Having your
infrastructure declared in git completely mitigates infrastructure drift. Nothing
changes unless something changes in git. Controlling infrastructure drift using
GitOps controlled IaC enables organizations to control infrastructure costs.
A GitOps-based IDP provides organizations with the ability to definitively
control cloud spend. Consider the following example.

NOTE: This following example will become clearer after reading the KAOPS
section below, but for now, the important point is the infrastructure built
using IaC and GitOps will not change unless something in the source of truth
changes.

4.1.1.1 BUILDING INFRASTRUCTURE WITH GITOPS

Example: Mitigating Infrastructure Drift

Let’s say I built a 2 node EKS cluster in AWS using
GitOps and then co-worker with IAM rights logs into
the AWS console and changes the node count to 4.
My compute costs for that cluster essentially
doubled. The AWS console would allow the change
(as it should) and begin to build the additional two
nodes. The cluster configuration in AWS changed,
but it did not change in the source repository where
the node count is still 2. The IaC feature of the IDP
controlled by GitOps will revert that EKS cluster back
to 2 nodes because the source of truth did not
change, and costs do not increase. Drift mitigated,
but the application, now expecting 4 nodes, will
likely break. Building infrastructure with GitOps
avoids app disruption.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 17

For example, the manifest snippet
below would create a pod running
MongoDB version 5.0. If the manifest is
changed to 5.1, then a new pod
running 5.1 would be created and the
5.0 one terminated. If unhappy with
the change, then simply change the
manifest back to 5.0 and the upgrade
would be rolled back.

Current:

Cloud native applications are defined
and deployed using Kubernetes
manifest files. A manifest file is a text-
based schema, typically written in
YAML, to define the desired state of a
Kubernetes object. An application is a
Kubernetes object.

A manifest file contains an image
digest. An image digest contains the
version of the application image to be
deployed. Using a GitOps approach an
application’s manifest file would be
stored in a git repository. The GitOps
based IDP will monitor the manifest in
the repository and deploy whatever is
declared in git. This GitOps approach
means an application can be upgraded
or rolled back simply by changing the
version in the image digest of the
manifest file stored in git.

To upgrade or rollback a deployed
application the image version is
changed in the application’s source
manifest file and committed and
merged to the repository branch being
monitored by GitOps.

4.1.2 DEPLOYING APPS WITH GITOPS

A GitOps-based IDP gives you a declarative
method for upgrading and rolling back
application versions.

Upgrade:

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 18

The JIRA approver need not know what
a pull request is or how to perform one
to affect the production change. Once
approved, the JIRA workflow approves
the pull request, merges the change to
the production branch, and the node
count would be changed from 2 to 4.
The entire sequence from developer
commit to production change would
have a complete audit trail of changes
and approvals.

The approach used in the infrastructure
example above applies to application
upgrades and rollbacks as well. The
same JIRA workflows could be applied
to repositories containing the
production application manifests. Only
approved approvers can sign off on
production changes.

GitOps functions (e.g. git merge) are
easily integrated into workflow
features provided by business
management tools like JIRA and
ServiceNow.

Let’s consider a JIRA workflow
example that controls IaC changes in
production.

An IaC developer wants to change a
production AWS EKS cluster node
count from 2 to 4 because more
compute is required. The developer
commits the change to his/her branch
and issues a pull request
(merge developer branch to
production branch). A pull request
must be approved before being
merged to a target branch (e.g.
production).

A JIRA workflow can be easily
developed to do an “under the hood”
pull request approval and merge (or
not) so the change can be realized in
production (or not).

4.1.3 GITOPS AND BUSINESS MANAGEMENT TOOLS

The entire sequence from developer commit to
production change would have a complete audit
trail of changes and approvals.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 19

4.1.4 NOT JUST FOR PRODUCTION

Improving the DevEx greatly reduces
organizational friction because it enables devs
to dev and ops to op.

The examples in the sections above
focus on a production environment.
The great thing about a GitOps-
based IDP is that it applies to any
context: Dev, QA, and Staging. A
production environment can easily
be reproduced in-house for blue-
green testing, customer debug
scenarios, etc.

Platform Engineers and DevOps
teams that choose a GitOps-based
IDP can create and manage
consistent environments across an
organization that fosters a
developer friendly solution by
removing the requirement for
developers to manage cloud native
infrastructure to deploy and test
their changes.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 20

4.2 MULTI-CLUSTER NETWORKING

Abstracting the Complexities of an
Overlay Network, Connecting Clusters,
and Forming Virtual Application Networks

Multi-Cluster Networking

Multi-Cluster networking is a
foundation requirement of a cloud
native IDP because things like GitOps
and Observability require
connectivity between clusters.

For managing a network of clusters, a
Layer 7 overlay network should be
considered. An overlay network is a
virtual (or logical) network that exists
on top of a physical network. The
Internet is an example of an overlay
network. Building Layer 3/4 network
connectivity between clusters is
complex and costly because it
typically requires multiple domain
experts (network, firewall, IP
gateways, etc.) at ISO layers 3 and 4.

An IDP that uses a secure overlay
network can quickly connect any
cluster and effectively build a
Kubernetes control plane that can be
called a Virtual Application Network.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 21

5. KAOPS - A MODERN IDP FRAMEWORK

Nethopper
KAOPS
GitOps and Multi-Clustering
Networking

In the Introduction, I mentioned how
fragmenting the monolithic image
into microservices was the easy part.
Deployment and orchestration of
our applications proved difficult.

In the search for a managed
Kubernetes platform, I found and
was introduced to Nethopper and
KAOPS. I liked KAOPS so much that
I joined the company.

As mentioned previously a cloud
native IDP requires GitOps and
Multi-Clustering Networking.

Before diving into the architecture
details, we’ll highlight the OSS
projects KAOPS integrates to satisfy
those requirements.

KAOPS stands for Kubernetes
Application Operations Platform as a
Service.

KAOPS provides value in two
key areas:

Simplification of app

Infrastructure management and
extensibility.

The simplicity of KAOPS enables
organizations to rapidly come up to
speed on managing and observing
applications and infrastructure. No
need to look for a unicorn cloud
native expert that may create an
esoteric solution that is unusable
once he/she leaves the company.
KAOPS is extensible via git.

More on that in a bit.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 22

5. KAOPS - A MODERN IDP FRAMEWORK (Cont.)

Consider the following from InfoQ’s
July 2023 DevOps and Cloud Trends
Report:

KAOPS is a cloud provider and
Kubernetes agnostic that provides
enterprise level support for all integrated
OSS projects and greatly abstracts their
complexities.

KAOPS users need not take the time to
upskill themselves by learning the
intimate details of the projects like
ArgoCD or concern themselves with their
release trains. KAOPS integrates stable
and production tested versions of each
OSS project.

The first step in architecting a cloud
native environment is selecting the
infrastructure. Infrastructure choices
include public cloud providers, VMWare,
on-prem options like Openstack and
others. Once the infrastructure is chosen
the next choice becomes which
Kubernetes distribution to use. In most
cases, that decision is made for you by
the cloud providers, EKS for AWS, AKS
for Azure, GKE for Google, Openshift for
Openstack, etc.

KAOPS is the only IDP that does not
force a Kubernetes distribution upon you.
This is intentional. Providing an IDP that
is cloud and Kubernetes agnostic makes
your IDP future-proof. Application
migration across cloud providers and on-
prem clusters is seamless. Beware of any
IDP that comes with a Kubernetes
distribution.

Platform engineering is
evolving toward

simplification and value
delivery, adopting a
platform-as-a-service
mindset. The role of

platform engineering teams
is shifting from complex

infrastructure management
to becoming service

providers focused on user
satisfaction and value

creation. Observability,
financial aspects, and

sustainability considerations
are becoming integral to

platform engineering.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 23

https://www.infoq.com/articles/cloud-devops-trends-2023/
https://www.infoq.com/articles/cloud-devops-trends-2023/
https://www.infoq.com/articles/cloud-devops-trends-2023/

The following illustration depicts how KAOPS sits on top of any
Kubernetes distribution and the currently integrated OSS projects and
their domain.

What Happened to Platform Engineering?
Daniel P. Donahue

Figure 1 - KAOPS Ecosystem

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 24

5.1 THE OPINIONATED PATH

KAOPS: A Foundation for Platform
Engineers to Build Their IDP

GitOps-based IDP Framework

KAOPS is Nethopper’s GitOps-based
IDP framework that provides a
foundation for platform engineers to
build their internal developer platform.

It takes an opinionated approach to
GitOps and provides an extensible
and configurable way for platform
engineers to build and manage
infrastructure, manage secrets, deploy
applications, AIOps, and observe it all.

KAOPS is a modern IDP that enables platform
engineers to jumpstart their own IDP by providing

an extensible GitOps-based multi-cluster
networking platform.

KAOPS integrates:

ArgoCD for GitOps management

Skupper for multi-cluster
networking

Other OSS projects for IaC,
Observability, AIOps, etc.

These projects are detailed later in
this section.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 25

5.1.1 ARGO CD FOR GITOPS

ArgoCD is a declarative, GitOps continuous
delivery tool for Kubernetes.

ArgoCD is a CNCF project that achieved Graduated status in December 2022.
Graduated simply means the project is considered mature, proven, and widely
adopted. What is ArgoCD? ArgoCD is a declarative, GitOps continuous delivery
tool for Kubernetes4.

Most Kubernetes deployments are managed using a push model. An Ops person
uses kubectl to deploy or modify applications. This manual process is labor
intensive and error prone, especially in a production environment. ArgoCD uses
an automated pull model.

The main purpose of ArgoCD is to ensure the live state of an application matches
the desired state of an application. The live state is the status of the application
running in a pod. The desired state is the application resource manifest declared
in a git repository. ArgoCD accomplishes this task by continually comparing the
live state against the desired state. If ArgoCD detects any difference between the
two, then the application is redeployed according to the resource manifest in git.

In summary, pull, don’t push.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 26

https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/

5.1.1 ARGOCD FOR GITOPS (Cont.)

The following diagram depicts the ArgoCD architecture.

Figure 2 - ArgoCD Architecture

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 27

4.1.1.1 COMPLEXITIES ABSTRACTED

KAOPS abstracts a lot of the complexities of ArgoCD (e.g. ApplicationSet) so
platform engineers need not spend the time to learn its intimate details.
KAOPS also uses multi-cluster networking in a way that enables a single
ArgoCD server to manage multiple clusters in a virtual application network.

ArgoCD complexities like ApplicationSets are abstracted by KAOPS using
simple Distribution Rules. KAOPS users apply tags to clusters and
applications and then create simple rules that KAOPS uses to determine
which application should go to which clusters.

Any application tagged “foo” should go to any cluster tagged “bar”.

KAOPS will create ApplicationSets in the cluster running the instance of the
ArgoCD server and ArgoCD will distribute the application accordingly. An
application can be any Kubernetes object, including a core application
manifest, tool manifest, helm chart, etc.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 28

5.1.2 SKUPPER FOR MULTI-CLUSTER NETWORKING

Skupper enables cluster-to-cluster
communication.

Skupper is the best project you’ve probably haven’t heard about.

It’s an OSS project from Red Hat used by KAOPS that enables secure cluster-
to-cluster communication by creating a Virtual Application Network (VAN).

A VAN consists of a Hub cluster and Edge clusters. The Hub cluster is the one
cluster in a VAN that is reachable to Edge Clusters. To enable reachability, a
Hub cluster is configured using either Ingress, Load Balancer, or NodePort.
Edge clusters only require Port 443 to be opened in the outbound direction to
attach to the hub.

KAOPS creates and uses a VAN to
create an IDP control plane used by
ArgoCD and other OSS projects to

manage a group of clusters.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 29

http://skupper.io/

5.2 THE GOLDEN PATH: INTEGRATED OSS PROJECTS

KAOPS: An Extensible, Yet Opinionated
Approach to the Golden Path

GitOps and Multi-Cluster Networking

As mentioned previously, KAOPS is only opinionated when it comes to
GitOps and Multi-Cluster Networking.

KAOPS remains somewhat opinionated about other OSS projects used
for IaC, Observability, Secrets, CI/CD workflow automation, and AIOps.
We call this extensible yet opinionated approach: The Golden Path.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 30

5.2.1 INTEGRATED PROJECTS

Golden path comprised of chosen Open Source
Software as best-practices.

The golden path in KAOPS is comprised of OSS tools that were chosen as best
practices in collaboration with Nethopper customers and partners. They are
fully integrated into the platform and come with enterprise-grade support.

The following subsections briefly describe each of the OSS projects shown in
the KAOPS Ecosystem figure above. The OSS projects below are enabled by
default when creating a VAN. They are all optional and can be deselected
when creating a VAN.

What Happened to Platform Engineering?
Daniel P. Donahue

5.2.1.1 CROSSPLANE

Crossplane is used by KAOPS for IaC. It has native support
for Terraform, AWS, Azure, GCP, and Kubernetes. No need
to throw away existing Terraform. Write a simple
Crossplane manifest, point it to your Terraform repository,
configure it in KAOPS, and KAOPS will build it for you. Not
only will KAOPS build it for you, but it will ensure the
infrastructure declared in git is what is built. No
infrastructure drift.

5.2.1.2 PROMETHEUS AND GRAFANA

Grafana and Prometheus are used for Observability. When
enabled (default), KAOPS will install a Prometheus server in
every cluster in a VAN. A single Grafana instance will be
installed in the VAN’s hub cluster. The single instance of
Grafana can collect and display KPIs from any cluster in the
VAN resulting in a single pane of glass for Observability.

KAOPS comes stocked with 28 Grafana dashboards and
can easily integrate user dashboards.

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 31

What Happened to Platform Engineering?
Daniel P. Donahue

5.2.1.3 SEALED SECRETS

Sealed Secrets is an OSS project started by Bitnami used to
encrypt Kubernetes secrets. KAOPS uses Sealed Secrets for
Security giving users the option to encrypt things like cloud
provider and private repository credentials in a way that can
be shared with users outside an organization (e.g. managed
service partner, public git repo, etc.).

5.2.1.4 K8SGPT

K8sGPT is like having a Kubernetes expert in every cluster.
When enabled (default), KAOPS will install K8sGPT in every
cluster in a VAN. K8sGPT continually scans each cluster
diagnosing and triaging Kubernetes issues in plain English. It
anonymizes the data and runs the scans through OpenAI or
Local AI (configurable).

When debugging issues K8sGPT makes it fast and simple to
either pinpoint the problem to a Kubernetes level or rule it
out as a root cause failure.

5.2.1.5 ARGO EVENTS AND WORKFLOWS

Argo Events and Workflows work together to provide a
generic event-driven workflow automation framework for
Kubernetes. A typical application for Events and Workflows
is to automate CI/CD pipeline. For example, events can be
defined (as a manifest) to monitor source code repositories
and branches for changes and trigger workflows. Workflows
(build, test, security scan, merge, etc.) can be conditionally
pipelined in a way that results in a CI/CD framework.

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 32

5.2.1.6 OPTIMAL AND EXTENSIBLE

The golden path is not forced on KAOPS users. Installation
of the projects is optional and can be deselected with
building a VAN. Would you rather use Splunk instead of
Grafana and Prometheus for observability? No problem.

KAOPS is extensible by git.

Using the Splunk example, a platform engineer using
KAOPS can deselect Grafana when building the VAN, add
the repo containing the Splunk manifests, and then create
distribution rules to select target VAN clusters for Splunk
deployment. Splunk will be deployed on all appropriate
clusters in accordance with the distribution rules created by
the user.

What about deploying tools not integrated into KAOPS?

No problem. Tools are deployed no differently, in that
applications point KAOPS to the source repository
containing the tool manifests, create the distribution rules,
and the tool will be deployed.

I did this exact scenario recently for a customer demo. The
customer wanted to see KubeVirt deploy in production.
KubeVirt is a KAOPS roadmap item, but not yet integrated
into the platform, so I deployed it using GitOps.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 33

The following illustration sums up the KAOPS architecture.

Figure 3 - KAOPS Architecture

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 34

5.3 EASE OF USE

The KAOPS UI Has Been Designed to Be
Easy to Use

Getting Started with KAOPS

KAOPS can be operated from either the SaaS UI or its API. The KAOPS UI has
been designed to be easy to use. The API is not covered in this document.

The following sequence diagram illustrates the typical steps for setting up and
using KAOPS.

Figure 4 - KAOPS Setup

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 35

Figure 5 - Using KAOPS

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 36

6. CONCLUSION

Build vs. Buy:
How to Decide
Key Factors to Consider

All organizations in the cloud native space will require a Platform Engineering
initiative. The question for C-suite executives is (or will be),
“Buy or build?”. Building requires a team of experts in both the cloud native
and PE spaces. Building also means time. Building a platform for cloud native
environments takes quite a bit of time with no guarantee of success.

Buying a platform like KAOPS that provides an extensible framework for PE
saves the time required to architect a solution and build it. KAOPS’ framework
gives organizations both an architectural and operational framework that comes
with enterprise grade support for 8 (eight) OSS projects and counting (more
coming!). No need for organizations to sign enterprise agreements with
commercial companies built to support a single OSS project.

Organizations can sign a single
enterprise agreement with Nethopper
and not 8 (eight) different companies.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 37

dan@nethopper.io

Book a 15-minute meeting with me

LinkedIn

Learn More
Reach out to connect or learn more.

Nethopper's mission is to make it easy for enterprise platform/
DevOps teams to use a platform-engineering framework to build
an IDP to operate Kubernetes applications across clouds and
clusters. To learn more, visit www.nethopper.io. You can also
follow us on LinkedIn, Twitter (X) and YouTube.

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 38

mailto:dan@nethopper.io
https://calendly.com/dan-nethopper
https://www.linkedin.com/feed/
https://www.linkedin.com/company/nethopper/posts/?feedView=all&viewAsMember=true
https://www.youtube.com/@NethopperKAOPS
https://twitter.com/nethopper10

1 Platform Engineering on Kubernetes by Mauricio Salatino; Manning Publications ISBN 9781617299322

2 Common Pitfalls of App Modernization

3 https://about.gitlab.com/topics/gitops

4
https://argo-cd.readthedocs.io/en/stable/

References

What Happened to Platform Engineering?
Daniel P. Donahue

Copyright © 2024 by Nethopper Inc. All Rights Reserved. 39

https://www.manning.com/books/platform-engineering-on-kubernetes
https://vfunction.com/blog/common-pitfalls-of-app-modernization-projects/#:~:text=Challenges%20of%20Application%20Modernization,fail%20to%20achieve%20their%20goals.

